Given:
Sphere and cylinder have same radius and height.
Volume of the cylinder = 48 cm³
To find:
The volume of the sphere.
Solution:
Radius and height of cylinder are equal.
⇒ r = h
Volume of cylinder:
[tex]V=\pi r^2h[/tex]
Substitute the given values.
[tex]48=\pi r^2r[/tex] (since r = h)
[tex]48=\pi r^3[/tex]
[tex]48=3.14 \times r^3[/tex]
Divide by 3.14 on both sides.
[tex]$\frac{48}{3.14} =\frac{3.14\times r^3}{3.14}[/tex]
[tex]$15.28=r^3[/tex]
Taking cube root on both sides, we get
2.48 = r
The radius of the cylinder is 2.48 cm.
Sphere and cylinder have same radius and height.
Volume of sphere:
[tex]$V=\frac{4}{3} \pi r^3[/tex]
[tex]$V=\frac{4}{3} \times 3.14 \times (2.48)^3[/tex]
[tex]V=63.85[/tex]
The volume of the sphere is 63.85 cm³.