The mass of the ion is 5.96 X 10⁻²⁵ kg
Explanation:
The electrical energy given to the ion Vq will be changed into kinetic energy [tex]\frac{1}{2}mv^2[/tex]
As the ion moves with velocity v in a magnetic field B then the magnetic Lorentz force Bqv will be balanced by centrifugal force [tex]\frac{mv^2}{r}[/tex].
So,
[tex]Vq = \frac{1}{2}mv^2[/tex]
and
[tex]Bqv = \frac{mv^2}{r}[/tex]
Right from these eliminating v, we can derive
[tex]m = \frac{B^2r^2q}{2V}[/tex]
On substituting the value, we get:
[tex]m = \frac{(0.4)^2X (0.305)^2 X1.602X 10^-^1^9}{2X 2000}\\\\[/tex]
m = 5.96 X 10⁻²⁵ kg.