A mass spectrometer applies a voltage of 2.00 kV to accelerate a singly charged positive ion. A magnetic field of B = 0.400 T then bends the ion into a circular path of radius 0.305 m. What is the mass of the ion?

Respuesta :

The mass of the ion is 5.96 X 10⁻²⁵ kg

Explanation:

The electrical energy given to the ion Vq will be changed into kinetic energy [tex]\frac{1}{2}mv^2[/tex]

As the ion moves with velocity v in a magnetic field B then the magnetic Lorentz force Bqv will be balanced by centrifugal force [tex]\frac{mv^2}{r}[/tex].

So,

[tex]Vq = \frac{1}{2}mv^2[/tex]

and

[tex]Bqv = \frac{mv^2}{r}[/tex]

Right from these eliminating v, we can derive

[tex]m = \frac{B^2r^2q}{2V}[/tex]

On substituting the value, we get:

[tex]m = \frac{(0.4)^2X (0.305)^2 X1.602X 10^-^1^9}{2X 2000}\\\\[/tex]

m = 5.96 X 10⁻²⁵ kg.