Respuesta :
Hello,
y=a*b^x
(-4,72)==> 72=a*b^(-4) (1)
(-2,18)==> 18=a*b^(-2) (2)
(1)/(2)==>4=b^(-2)==>b=1/2 or b=(-1/2) to exclude since b>0
b=0.5 and a*0.5²=18==>a=9/2
Y=9/2*0.5^x
y=a*b^x
(-4,72)==> 72=a*b^(-4) (1)
(-2,18)==> 18=a*b^(-2) (2)
(1)/(2)==>4=b^(-2)==>b=1/2 or b=(-1/2) to exclude since b>0
b=0.5 and a*0.5²=18==>a=9/2
Y=9/2*0.5^x

Answer:
The exponential function is [tex]y=\frac{9}{2}(\frac{1}{2})^x[/tex].
Step-by-step explanation:
We are given,
The function [tex]y=ab^x[/tex] that passes through the points (-4,72) and (-2,18).
Substituting the values of x and y in the equation gives us,
[tex]72=ab^{-4}[/tex] ................(1)
[tex]18=ab^{-2}[/tex] ..................(2)
Dividing equation (1) by (2), we get,
[tex]\frac{72}{18}=\frac{ab^{-4}}{ab^{-2}}\\\\4=b^{-2}\\\\b^2=\frac{1}{4}\\\\b=\pm \frac{1}{2}[/tex]
Since, in exponential function [tex]y=ab^x[/tex], we have b > 0.
Thus, [tex]b=\frac{1}{2}[/tex]
Substituting the value in (1) gives us,
[tex]72=a(\frac{1}{2})^{-4}\\\\72=a\times 2^4\\\\72=16a\\\\a=\frac{9}{2}[/tex]