Given that the functions [tex]f(x)=x+4[/tex] and [tex]g(x)=x^{3}[/tex]
We need to determine the value of the function [tex](g \ {\circ} f)(-3)[/tex]
First, we shall determine the composition of the function [tex](g \circ f)(x)[/tex]
Function [tex](g \circ f)(x)[/tex]:
Let us determine the function [tex](g \circ f)(x)[/tex]
Thus, we have;
[tex](g \circ f)(x)=g[f(x)][/tex]
[tex]=g[x+4][/tex]
[tex]=(x+4)^3[/tex]
[tex](g \circ f)(x)=x^3+3x^2(4)+3x(4)^2+(4)^3[/tex]
[tex](g \circ f)(x)=x^3+12x^2+48x+64[/tex]
Thus, the function is [tex](g \circ f)(x)=x^3+12x^2+48x+64[/tex]
Value of the function [tex](g \ {\circ} f)(-3)[/tex]:
The value of the function can be determined by substituting x = -3 in the function [tex](g \circ f)(x)=x^3+12x^2+48x+64[/tex]
Thus, we have;
[tex](g \circ f)(-3)=(-3)^3+12(-3)^2+48(-3)+64[/tex]
Simplifying the terms, we get;
[tex](g \circ f)(-3)=-27+12(9)+48(-3)+64[/tex]
[tex](g \circ f)(-3)=-27+108-144+64[/tex]
[tex](g \circ f)(-3)=1[/tex]
Thus, the value of the function [tex](g \ {\circ} f)(-3)[/tex] is 1.