Respuesta :

Given that the functions [tex]f(x)=x+4[/tex] and [tex]g(x)=x^{3}[/tex]

We need to determine the value of the function [tex](g \ {\circ} f)(-3)[/tex]

First, we shall determine the composition of the function [tex](g \circ f)(x)[/tex]

Function [tex](g \circ f)(x)[/tex]:

Let us determine the function [tex](g \circ f)(x)[/tex]

Thus, we have;

[tex](g \circ f)(x)=g[f(x)][/tex]

               [tex]=g[x+4][/tex]

               [tex]=(x+4)^3[/tex]

[tex](g \circ f)(x)=x^3+3x^2(4)+3x(4)^2+(4)^3[/tex]

[tex](g \circ f)(x)=x^3+12x^2+48x+64[/tex]

Thus, the function is [tex](g \circ f)(x)=x^3+12x^2+48x+64[/tex]

Value of the function [tex](g \ {\circ} f)(-3)[/tex]:

The value of the function can be determined by substituting x = -3 in the function [tex](g \circ f)(x)=x^3+12x^2+48x+64[/tex]

Thus, we have;

[tex](g \circ f)(-3)=(-3)^3+12(-3)^2+48(-3)+64[/tex]

Simplifying the terms, we get;

[tex](g \circ f)(-3)=-27+12(9)+48(-3)+64[/tex]

[tex](g \circ f)(-3)=-27+108-144+64[/tex]

[tex](g \circ f)(-3)=1[/tex]

Thus, the value of the function [tex](g \ {\circ} f)(-3)[/tex] is 1.