Answer:
The exponential form of equation [tex]log_{6}(216)=3[/tex] is (6)³ = 216
Step-by-step explanation:
The exponential equation of [tex]log_{b}(a)=c[/tex] is [tex]a=b^{c}[/tex] , where b is the base, c is the exponent of b and a is the value of [tex]b^{c}[/tex]
Ex: [tex]log_{2}(8)=3[/tex] , its exponential function is [tex]2^{3}=8[/tex]
Now let us solve the question
∵ [tex]log_{6}(216)=3[/tex]
∴ The base is 6
∴ The exponent is 3
∴ The answer is 216
∴ The exponential equation is (6)³ = 216
The exponential form of equation [tex]log_{6}(216)=3[/tex] is (6)³ = 216