Respuesta :
Answer:
C. [tex]\displaystyle P = 10 - 6e^{-t}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Functions
- Function Notation
- Exponential Rule [Multiplying]: [tex]\displaystyle b^m \cdot b^n = b^{m + n}[/tex]
Algebra II
- Log Properties
- Natural log ln(x) and eˣ
Calculus
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Slope Fields
- Solving differentials
- Separation of Variables
Antiderivatives - Integrals
Integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
Logarithmic Integration
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle \frac{dP}{dt} + P = 10[/tex]
[tex]\displaystyle P(0) = 4[/tex]
Step 2: Rewrite
Separation of Variables. Get differential equation to a form where we can integrate both sides.
- [Subtraction Property of Equality] Isolate [tex]\displaystyle \frac{dP}{dt}[/tex]: [tex]\displaystyle \frac{dP}{dt} = 10 - P[/tex]
- [Multiplication Property of Equality] Multiply dt on both sides: [tex]\displaystyle dP = (10 - P) dt[/tex]
- [Division Property of Equality] Isolate P terms together: [tex]\displaystyle \frac{1}{10 - P}dP = dt[/tex]
Step 3: Find General Solution Pt. 1
- [Equality Property] Integrate both sides: [tex]\displaystyle \int {\frac{1}{10 - P}} \, dP = \int \, dt[/tex]
- [Left Integral] Integrate [Integration Rule - Reverse Power Rule]: [tex]\displaystyle \int {\frac{1}{10 - P}} \, dP = t + C[/tex]
Step 4: Identify Variables for U-Substitution
Set variables for u-sub.
- Set: [tex]\displaystyle u = 10 - P[/tex]
- Differentiate [Basic Power Rule]: [tex]\displaystyle \frac{du}{dP} = -1[/tex]
- [Multiplication Property of Equality] Rewrite: [tex]\displaystyle du = -dP[/tex]
Step 5: Find General Solution Pt. 2
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle -\int {\frac{-1}{10 - P}} \, dP = t + C[/tex]
- [Integral] U-Substitution: [tex]\displaystyle -\int {\frac{1}{u}} \, du = t + C[/tex]
- [Integral] Integrate [Logarithmic Integration]: [tex]\displaystyle -ln|u| = t + C[/tex]
- [Division Property of Equality] Divide -1 on both sides: [tex]\displaystyle ln|u| = -t + C[/tex]
- [Equality Property] e both sides: [tex]\displaystyle e^{ln|u|} = e^{-t + C}[/tex]
- Simplify [Exponential Rule - Multiplying]: [tex]\displaystyle |u| = e^{-t} \cdot e^{C}[/tex]
- Simplify: [tex]\displaystyle |u| = Ce^{-t}[/tex]
- Back-Substitute: [tex]\displaystyle |10 - P| = Ce^{-t}[/tex]
- Rewrite: [tex]\displaystyle 10 - P = \pm Ce^{-t}[/tex]
This is our general solution to the differential equation.
Step 6: Find Particular Solution
- Substitute in point [General Solution]: [tex]\displaystyle 10 - 4 = \pm Ce^{-0}[/tex]
- Simplify: [tex]\displaystyle 6 = \pm C[/tex]
- Substitute in C [General Solution]: [tex]\displaystyle 10 - P = 6e^{-t}[/tex]
- [Subtraction Property of Equality] Subtract 10 on both sides: [tex]\displaystyle -P = 6e^{-t} - 10[/tex]
- [Division Property of Equality] Divide -1 on both sides: [tex]\displaystyle P = 10 - 6e^{-t}[/tex]
This is our particular solution to the differential equation.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Slope Fields
Book: College Calculus 10e
Combining the particular and the homogeneous solution, it is found that the solution to the differential equation is:
- C. [tex]P(t) = 10 - 6e^{-t}[/tex]
The differential equation is:
[tex]\frac{dP}{dt} + P = 10[/tex]
What is the homogeneous solution?
- It's the solution to the following differential equation:
[tex]\frac{dP}{dt} + P = 0[/tex]
Applying separation of variables:
[tex]\frac{dP}{dt} = -P[/tex]
[tex]\frac{dP}{P} = -dt[/tex]
[tex]\int \frac{dP}{P} = -\int dt[/tex]
[tex]\ln{P} = -t + K[/tex]
[tex]P_h(t) = Ke^{-t}[/tex]
What is the particular solution?
- It's the solution considering an input similar to the left side.
Since the left-side is a constant, the input also is, hence:
[tex]P_p(t) = A[/tex]
[tex]\frac{dP_p(t)}{dt} = 0[/tex]
Then:
[tex]\frac{dP}{dt} + P = 10[/tex]
[tex]A = 10[/tex]
Hence, the complete solution, combining both, is:
[tex]P(t) = P_h(t) + P_p(t)[/tex]
[tex]P(t) = Ke^{-t} + 10[/tex]
Since P(0) = 4:
[tex]4 = K + 10[/tex]
[tex]K = -6[/tex]
Hence, option C is correct.
You can learn more about particular and the homogeneous solutions at https://brainly.com/question/25308859