contestada

Which of the following is the solution to the differential equation dP/dt+P=10 with the initial condition P(0)=4

A. P= -1+sqrt20t+25
B. P=5-e^-t
C. P=10-6e^-t
D. P=10-6e^t

Respuesta :

Space

Answer:

C.  [tex]\displaystyle P = 10 - 6e^{-t}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Functions
  • Function Notation
  • Exponential Rule [Multiplying]:                                                                        [tex]\displaystyle b^m \cdot b^n = b^{m + n}[/tex]

Algebra II

  • Log Properties
  • Natural log ln(x) and

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Slope Fields

  • Solving differentials
  • Separation of Variables

Antiderivatives - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                    [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Property [Multiplied Constant]:                                                             [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

U-Substitution

Logarithmic Integration

Step-by-step explanation:

Step 1: Define

[tex]\displaystyle \frac{dP}{dt} + P = 10[/tex]

[tex]\displaystyle P(0) = 4[/tex]

Step 2: Rewrite

Separation of Variables. Get differential equation to a form where we can integrate both sides.

  1. [Subtraction Property of Equality] Isolate  [tex]\displaystyle \frac{dP}{dt}[/tex]:                                               [tex]\displaystyle \frac{dP}{dt} = 10 - P[/tex]
  2. [Multiplication Property of Equality] Multiply dt on both sides:                     [tex]\displaystyle dP = (10 - P) dt[/tex]
  3. [Division Property of Equality] Isolate P terms together:                               [tex]\displaystyle \frac{1}{10 - P}dP = dt[/tex]

Step 3: Find General Solution Pt. 1

  1. [Equality Property] Integrate both sides:                                                        [tex]\displaystyle \int {\frac{1}{10 - P}} \, dP = \int \, dt[/tex]
  2. [Left Integral] Integrate [Integration Rule - Reverse Power Rule]:                 [tex]\displaystyle \int {\frac{1}{10 - P}} \, dP = t + C[/tex]

Step 4: Identify Variables for U-Substitution

Set variables for u-sub.

  1. Set:                                                                                                                     [tex]\displaystyle u = 10 - P[/tex]
  2. Differentiate [Basic Power Rule]:                                                                      [tex]\displaystyle \frac{du}{dP} = -1[/tex]
  3. [Multiplication Property of Equality] Rewrite:                                                  [tex]\displaystyle du = -dP[/tex]

Step 5: Find General Solution Pt. 2

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                     [tex]\displaystyle -\int {\frac{-1}{10 - P}} \, dP = t + C[/tex]
  2. [Integral] U-Substitution:                                                                                  [tex]\displaystyle -\int {\frac{1}{u}} \, du = t + C[/tex]
  3. [Integral] Integrate [Logarithmic Integration]:                                                 [tex]\displaystyle -ln|u| = t + C[/tex]
  4. [Division Property of Equality] Divide -1 on both sides:                                 [tex]\displaystyle ln|u| = -t + C[/tex]
  5. [Equality Property] e both sides:                                                                     [tex]\displaystyle e^{ln|u|} = e^{-t + C}[/tex]
  6. Simplify [Exponential Rule - Multiplying]:                                                         [tex]\displaystyle |u| = e^{-t} \cdot e^{C}[/tex]
  7. Simplify:                                                                                                             [tex]\displaystyle |u| = Ce^{-t}[/tex]
  8. Back-Substitute:                                                                                               [tex]\displaystyle |10 - P| = Ce^{-t}[/tex]
  9. Rewrite:                                                                                                             [tex]\displaystyle 10 - P = \pm Ce^{-t}[/tex]

This is our general solution to the differential equation.

Step 6: Find Particular Solution

  1. Substitute in point [General Solution]:                                                            [tex]\displaystyle 10 - 4 = \pm Ce^{-0}[/tex]
  2. Simplify:                                                                                                             [tex]\displaystyle 6 = \pm C[/tex]
  3. Substitute in C [General Solution]:                                                                   [tex]\displaystyle 10 - P = 6e^{-t}[/tex]
  4. [Subtraction Property of Equality] Subtract 10 on both sides:                       [tex]\displaystyle -P = 6e^{-t} - 10[/tex]
  5. [Division Property of Equality] Divide -1 on both sides:                                 [tex]\displaystyle P = 10 - 6e^{-t}[/tex]

This is our particular solution to the differential equation.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Slope Fields

Book: College Calculus 10e

Combining the particular and the homogeneous solution, it is found that the solution to the differential equation is:

  • C. [tex]P(t) = 10 - 6e^{-t}[/tex]

The differential equation is:

[tex]\frac{dP}{dt} + P = 10[/tex]

What is the homogeneous solution?

  • It's the solution to the following differential equation:

[tex]\frac{dP}{dt} + P = 0[/tex]

Applying separation of variables:

[tex]\frac{dP}{dt} = -P[/tex]

[tex]\frac{dP}{P} = -dt[/tex]

[tex]\int \frac{dP}{P} = -\int dt[/tex]

[tex]\ln{P} = -t + K[/tex]

[tex]P_h(t) = Ke^{-t}[/tex]

What is the particular solution?

  • It's the solution considering an input similar to the left side.

Since the left-side is a constant, the input also is, hence:

[tex]P_p(t) = A[/tex]

[tex]\frac{dP_p(t)}{dt} = 0[/tex]

Then:

[tex]\frac{dP}{dt} + P = 10[/tex]

[tex]A = 10[/tex]

Hence, the complete solution, combining both, is:

[tex]P(t) = P_h(t) + P_p(t)[/tex]

[tex]P(t) = Ke^{-t} + 10[/tex]

Since P(0) = 4:

[tex]4 = K + 10[/tex]

[tex]K = -6[/tex]

Hence, option C is correct.

You can learn more about particular and the homogeneous solutions at https://brainly.com/question/25308859