Respuesta :
use equation: ΔH = MCΔT
M = mass of copper
C = specific heat capacity of copper
ΔT = temp. change
ΔH = 28.9 x 385 x 3.9 =43393.35J or 43.39KJ
M = mass of copper
C = specific heat capacity of copper
ΔT = temp. change
ΔH = 28.9 x 385 x 3.9 =43393.35J or 43.39KJ
Answer : The energy released will be, -11771.837 J
Solution :
Formula used :
[tex]Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]
where,
Q = heat released = ?
m = mass of copper = 28.9 g
c = specific heat of copper = [tex]0.385J/g^oC[/tex]
[tex]\Delta T=\text{Change in temperature}[/tex]
[tex]T_{final}[/tex] = final temperature = [tex]25^oC[/tex]
[tex]T_{initial}[/tex] = initial temperature = [tex]1083^oC[/tex]
Now put all the given values in the above formula, we get :
[tex]Q=28.9g\times 0.385J/g^oC\times (25-1083)^oC[/tex]
[tex]Q=-11771.837J[/tex]
Therefore, the energy released will be, -11771.837 J