Answer:
24.6 mL is the volume of the ball when the temperature spikes 410 K and the pressure increases to 956.2 Torr
Explanation:
The combined gas equation is,
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure inside a ball = 879.3 Torr
[tex]P_2[/tex] = final pressure inside a ball = 956.2 Torr
[tex]V_1[/tex] = initial volume of ball = [tex]21.6 mL[/tex]
[tex]V_2[/tex] = final volume of gas = ?
[tex]T_1[/tex] = initial temperature of gas = [tex]331 K[/tex]
[tex]T_2[/tex] = final temperature of gas = [tex]410 K[/tex]
Now put all the given values in the above equation, we get:
[tex]\frac{879.3 Torr \times 21.6 mL}{331 K}=\frac{956.2 Torr\times V_2}{410 K}[/tex]
[tex]V_2=24.6 mL[/tex]
24.6 mL is the volume of the ball when the temperature spikes 410 K and the pressure increases to 956.2 Torr