Answer:
[tex]2.4\times 10^{-21} J[/tex]
Explanation:
We are given that
l=0 and l=1
[tex]h=1.05\times 10^{-34} J\cdot s[/tex]
[tex]r=0.074nm=0.074\times 10^{-9} m[/tex]
[tex] 1nm=10^{-9} m[/tex]
Mass of single hydrogen,m=[tex]1.67\times 10^{-27} kg[/tex]
[tex]E_l=\frac{l(l+1)h^2}{mr^2}[/tex]
Energy difference,[tex]\Delta E=E_{l=1}-E_{l=0}[/tex]
[tex]\Delta E=\frac{h^2}{mr^2}(1(1+1))-\frac{h^2}{mr^2}(0(0+1))=\frac{h^2}{mr^2}(1(1+1))=\frac{2h^2}{mr^2}[/tex]
[tex]\Delta E=\frac{2\times (1.05\times 10^{-34})^2}{1.67\times 10^{-27}\times (0.074\times 10^{-9})^2}[/tex]
[tex]\Delta E=2.4\times 10^{-21} J[/tex]