Respuesta :
Answer:
See explanation
Step-by-step explanation:
Assuming
[tex] \cos( \theta) = - \frac{5}{ 6 } [/tex]
Using the Pythagorean identity:
[tex] {cos}^{2} ( \theta) + {sin}^{2} ( \theta) = 1[/tex]
[tex] { (- \frac{5}{ 6 }) }^{2} + {sin}^{2} ( \theta) = 1[/tex]
[tex] \sin \theta = \pm \frac{ \sqrt{11} }{6} [/tex]
since we are in the 3rd quadrant:
[tex] \sin \theta = - \frac{ \sqrt{11} }{6} [/tex]
Also, assuming
[tex] \tan( \beta) = \frac{4}{3} [/tex]
[tex] {sec}^{2} ( \beta) = 1 + \tan ^{2} ( \beta) [/tex]
[tex] {sec}^{2} ( \beta) = 1 + \frac{16}{9} [/tex]
[tex]{sec}^{2} ( \beta) = \frac{25}{9} [/tex]
[tex]{sec} ( \beta) = \pm \frac{5}{3}[/tex]
[tex]{cos} ( \beta) = \pm \frac{3}{5}[/tex]
In the first quadrant;.
[tex]{cos} ( \beta) = \frac{3}{5}[/tex]
and
[tex]{sin} ( \beta) = \frac{4}{5}[/tex]
Now :
[tex] \sin( \theta + \beta) = \sin( \theta) \cos \beta + \cos( \theta) \sin \beta[/tex]
[tex]\sin( \theta + \beta) = - \frac{ \sqrt{11} }{6} \times \frac{3}{5} + - \frac{5}{6} \times \frac{4}{5} [/tex]
[tex]\sin( \theta + \beta) = - \frac{2}{3} - \frac{ \sqrt{11} }{10} [/tex]