Respuesta :
Answer:
The minimum oscillation frequency for this circuit is 251,613.43 Hz
Explanation:
Given;
inductance, L = 2.0 mH
capacitor is varied from 100 pF to 200 pF
Oscillating frequency is given as;
[tex]F = \frac{1}{2\pi\sqrt{LC} }[/tex]
where;
F is the oscillating frequency
L is the inductance
C is the capacitance
When the capacitor, C = 100 pF
[tex]F = \frac{1}{2\pi \sqrt{LC} } \\\\F = \frac{1}{2\pi \sqrt{2*10^{-3}*100*10^{-12}} }\\\\F =355,835.13 \ HZ[/tex]
When the capacitor, C = 200 pF
[tex]F = \frac{1}{2\pi \sqrt{LC} } \\\\F = \frac{1}{2\pi \sqrt{2*10^{-3}*200*10^{-12}} } \\\\F = 251,613.43\ HZ[/tex]
Therefore, the minimum oscillation frequency for this circuit is 251,613.43 Hz
Answer:
The oscillating frequency is from 251613.43 Hz to 388835.1 Hz
Explanation:
L = 2.0 mH = 2 × 10⁻³ H
c = 100 pF to 200 pf
π = 3.142
oscillating frequency [tex]f=\frac{1}{2*3.142\sqrt{LC} }[/tex]
When c = 100 pf (100 × 10⁻¹²) :
oscillating frequency [tex]f=\frac{1}{2*3.142\sqrt{LC} }[/tex]
Substituting values
[tex]f=\frac{1}{2*3.142\sqrt{2*10^{-3}*100*10^{-12}} }\\f=\frac{1}{2.81*10^{-6}}\\f= 355835.1[/tex]
When c = 100 pf, f = 388835.1 Hz
When c = 200 pf (200 × 10⁻¹²) :
oscillating frequency [tex]f=\frac{1}{2*3.142\sqrt{LC} }[/tex]
Substituting values
[tex]f=\frac{1}{2*3.142\sqrt{2*10^{-3}*200*10^{-12}} }\\f=\frac{1}{3.97*10^{-6}}\\f= 251613.43[/tex]
When c = 200 pf, f = 251613.43 Hz
The oscillating frequency is from 251613.43 Hz to 388835.1 Hz