Answer:
The angular velocity of the disk is [tex]\bf{0.037~rad/s}[/tex].
Explanation:
Given:
The angular velocity of the solid disk, [tex]\omega_{0} = 0.067~rad/s[/tex]
Moment of inertia of the disk, [tex]I_{0} = 0.10~Kg.m^{2}[/tex]
The radius of the sand ring, [tex]r = 0.40~m[/tex]
Mass of the sand disk, [tex]M = 0.5~Kg[/tex].
From the conservation of angular momentum
[tex]I\omega = I_{0}\omega_{0}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(1)[/tex]
Here, [tex]I[/tex] is the moment of inertia of the disk after the sand ring is formed and [tex]\omega[/tex] is the new angular velocity.
The new moment of inertia of the disk and sand ring is given by
[tex]I = I_{r} + I_{0}\\= Mr^{2} + I_{0}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(2)[/tex]
Comparing equations (1) and (2), we have
[tex]\omega = \dfrac{I_{0}\omega_{0}}{Mr^{2} + I_{0}}\\= \dfrac{(0.10~Kg.m^{2})(0.067~ras/s)}{(0.50~Kg)(0.40^{2}~m^{2}) + 0.10~Kg.m^{2})}\\= 0.037~rad/s[/tex]