What is the simplified form of StartRoot 100 x Superscript 36 Baseline EndRoot ?

10x Superscript 18
10x Superscript 6
50x Superscript 18
50x Superscript 6

Respuesta :

Given:

The given expression is [tex]\sqrt{100 x^{36}}[/tex]

We need to determine the simplified form of the expression.

Simplified form of the expression:

Let us determine the simplified form of the expression.

Applying the rule, [tex]\sqrt[n]{a b}=\sqrt[n]{a} \sqrt[n]{b}[/tex]

We get;

[tex]\sqrt{100} \sqrt{x^{36}}[/tex]

Simplifying, we get;

[tex]10 \sqrt{x^{36}}[/tex]

Applying the exponent rule, [tex]a^{b c}=\left(a^{b}\right)^{c}[/tex], we have;

[tex]10 \sqrt{\left(x^{18}\right)^{2}}[/tex]

Simplifying, we get;

[tex]10 x^{18}[/tex]

Thus, the simplified form of the expression is [tex]10 x^{18}[/tex]

Hence, Option A is the correct answer.

Answer:

The answer is A

Step-by-step explanation: