Respuesta :

Given:

It is given that the lines AB and DE are parallel.

We need to determine the value of x.

Value of x:

Let us use the property of similar triangles.

Thus, using the similar triangles, the corresponding sides of the triangle is given by

[tex]\frac{AB}{ED}=\frac{BC}{CD}[/tex]

Substituting AB = 10, ED = 6, BC = 14 and CD = x in the above expression, we get;

[tex]\frac{10}{6}=\frac{14}{x}[/tex]

Cross multiplying, we have;

[tex]10x=14\times 6[/tex]

[tex]10x=84[/tex]

  [tex]x=8.4[/tex]

Thus, the value of x is 8.4