Respuesta :
Answer:
1) A
2) min; min; max; max
3) y = x² + 5x - 3
Step-by-step explanation:
f(x) = x² + 2(x)(5) + 5² - 5² + 24
f(x) = (x + 5)² - 25 + 24
f(x) = (x + 5)² - 1
In ax² + bx + c,
if a > 0, it's a min
if a < 0, it's a max
y = ax² + bx + c
Using (0,-3)
-3 = a(0)² + b(0) + c
c = -3
y = ax² + bx - 3
Using (1,3)
3 = a + b - 3
a + b = 6
Using (-1,-7)
-7 = a(-1)² + b(-1) - 3
-7 + 3 = a - b
a - b = -4
b = a + 4
a + (a + 4) = 6
2a = 2
a = 1
b = 5
y = x² + 5x - 3