Respuesta :

Given:

[tex]$\frac{2 i}{2+i}-\frac{3 i}{3+i}=a+b i[/tex]

To find:

The value of a and b.

Solution:

[tex]$\frac{2 i}{2+i}-\frac{3 i}{3+i}[/tex]

LCM of [tex]2+i, 3+i=(2+i)(3+i)[/tex]  

Make the denominator as LCM.

         [tex]$=\frac{2 i(3+i)}{(2+i)(3+i)}-\frac{3 i(2+i)}{(3+i)(2+i)}[/tex]

         [tex]$=\frac{2 i(3+i)-3 i(2+i)}{(2+i)(3+i)}[/tex]

Multiply the common term into inside the bracket.

         [tex]$=\frac{6i+2i^2-6i-3i^2}{6+2i+3i+i^2}[/tex]

The value of i² = -1

         [tex]$=\frac{6i-2-6i+3}{6+2i+3i-1}[/tex]

         [tex]$=\frac{1}{5+5i}[/tex]

Rationalize the denominator:

Multiply the conjugate.

         [tex]$=\frac{1}{5+5i}\times \frac{5-5i}{5-5i}[/tex]

         [tex]$=\frac{5-5i}{5^2-(5i)^2}[/tex]

         [tex]$=\frac{5-5i}{50}[/tex]

         [tex]$=\frac{5}{50}-\frac{5i}{50}[/tex]

Cancelling the common factors, we get

          [tex]$=\frac{1}{10}-\frac{1}{10} i[/tex]

The value of a is [tex]\frac{1}{10}[/tex] and the value of b is[tex]-\frac{1}{10}[/tex].