Respuesta :
Answer:
[tex]SQ=23.7\ ft[/tex]
Step-by-step explanation:
we know that
In the right triangle QRS
[tex]sin(R)=\frac{SQ}{QR}[/tex] ----> by SOH (opposite side divided by the hypotenuse)
substitute the given values
[tex]sin(31^o)=\frac{SQ}{46}[/tex]
solve for SQ
[tex]SQ=\frac{SQ}{46}sin(31^o)=23.7\ ft[/tex]
Answer:
6.9
Step-by-step explanation:
In ΔQRS, the measure of ∠S=90°, the measure of ∠R=31°, and QR = 46 feet. Find the length of SQ to the nearest tenth of a foot.