Respuesta :

Answer:

[tex]SQ=23.7\ ft[/tex]

Step-by-step explanation:

we know that

In the right triangle QRS

[tex]sin(R)=\frac{SQ}{QR}[/tex] ----> by SOH (opposite side divided by the hypotenuse)

substitute the given values

[tex]sin(31^o)=\frac{SQ}{46}[/tex]

solve for SQ

[tex]SQ=\frac{SQ}{46}sin(31^o)=23.7\ ft[/tex]

Answer:

6.9

Step-by-step explanation:

In ΔQRS, the measure of ∠S=90°, the measure of ∠R=31°, and QR = 46 feet. Find the length of SQ to the nearest tenth of a foot.