Answer:
x = 2.081, −1.081
Step-by-step explanation:
Use the quadratic formula to find the solutions.
−b±√b2−4(ac)
___________
2a
Substitute the values
a = −4, b = 4, and c = 9
into the quadratic formula and solve for x.
−4±√42−4⋅(−4⋅9)2⋅−4
Simplify the numerator.
Raise 4 to the power of 2.
x=−4±√16−4⋅(−4⋅9)
_______________
2⋅−4
Multiply −4 by 9.
x=−4±√16−4⋅−36
_____________
2⋅−4
Multiply −4 by −36.
x=−4±√16+144
____________
2⋅−4
Add 16 and 144.
x=−4±√160
_________
2⋅−4
Rewrite 160 as 4 to the power 2⋅10.
x=−4±√42⋅10
___________
2⋅−4
Pull terms out from under the radical.
x=−4±4√10
_________
2⋅−4
Multiply 2by −4.
x=−4±4√10
_________
−8
Simplify
−4±4√10
________
−8.
1 ± √10
x = _________
2
The result can be shown in multiple forms.
Exact Form:
1±√10
x= _______
2
Decimal Form:
x = 2.08113883…, −1.08113883…
ROUNDED:
x = 2.081, −1.081