Respuesta :
Answer:
For elliptical orbits: seldom
For circular orbits: always
Explanation:
We start by analzying a circular orbit.
For an object moving in circular orbit, the direction of the acceleration (centripetal acceleration) is always perpendicular to the direction of motion of the object.
Since acceleration has the same direction of the force (according to Newton's second law of motion), this means that the direction of the force (the centripetal force) is always perpendicular to the velocity of the object.
So for a circular orbit,
the direction of the velocity of the satellite is always perpendicular to the net force acting upon the satellite.
Now we analyze an elliptical orbit.
An elliptical orbit correponds to a circular orbit "stretched". This means that there are only 4 points along the orbit in which the acceleration (and therefore, the net force) is perpendicular to the direction of motion (and so, to the velocity) of the satellite. These points are the 4 points corresponding to the intersections between the axes of the ellipse and the orbit itself.
Therefore, for an elliptical orbit,
the direction of the velocity of the satellite is seldom perpendicular to the net force acting upon the satellite.
As per the orbits of the satellite and velocity in which they move is either seldom or always.
- As we start to analyze the orbits of the satellites, in a circular orbit the satellite is always perpendicular to the net force of the speed of the object.
- As in the case of the elliptical orbits, the orbit is stretched. This tells us that are four points along the orbit.
- Thus the satellite is seldom perpendicular to the net force acting upon the satellite.
For elliptical orbits: seldom and always
Learn more about the elliptical orbits.
brainly.com/question/14477125