Respuesta :

Answer:

ED = 6.5 cm

BE = 14.4 cm

Step-by-step explanation:

AB/BC = AE/ED => ED = BC×AE/AB

ED = 5×26/20 = 130/20 = 6.5 cm

AB/AC = BE/CD => BE = AB×CD/AC

BE = 20×18/25 = 360/25 = 14.4 cm

The length of ED is 6.5cm.

The length of BE is 14.4 cm.

In ΔACD

BE ∥ CD

In ΔACD and ΔABE

BE ∥ CD

∠ACD =∠ABE           (corresponding angles)

∠ADC = ∠AEB          (corresponding angles)

∠A = ∠A                    (common angle)

∴ΔACD ∼ ΔABE

So,  The corresponding sides are in proportion.

Now, find ED

[tex]\frac{AB}{BC}=\frac{AE}{ED}\\ED=AE(\frac{BC}{AB}) \\ED=26(\frac{5}{20} \\ED=6.5 cm[/tex]

Now, find BE

[tex]\frac{AB}{AC} =\frac{BE}{CD} \\BE=CD(\frac{AB}{AC})\\BE=18(\frac{20}{25})\\BE=14.4 cm[/tex]

Therefore, the length of ED is 6.5cm and the length of BE is 14.4 cm.

For more information:

https://brainly.com/question/23575326