Respuesta :

Take the cross product of [tex]\mathbf u[/tex] and [tex]\mathbf v[/tex], then divide the cross product by its norm.

[tex]\mathbf u\times\mathbf v=\begin{vmatrix}\langle1,0,0\rangle&\langle0,1,0\rangle&\langle0,0,1\rangle\\-8&-6&4\\17&-18&-1\end{vmatrix}[/tex]

[tex]=\begin{vmatrix}-6&4\\-18&-1\end{vmatrix}\langle1,0,0\rangle-\begin{vmatrix}-8&4\\17&-1\end{vmatrix}\langle0,1,0\rangle+\begin{vmatrix}-8&-6\\17&-18\end{vmatrix}\langle1,0,1\rangle[/tex]

[tex]=78\langle1,0,0\rangle+60\langle0,1,0\rangle+246\langle0,0,1\rangle[/tex]

[tex]=\langle78,60,246\rangle[/tex]

which has norm

[tex]\|\mathbf u\times\mathbf v\|=\sqrt{78^2+60^2+246^2}=30\sqrt{78}[/tex]

Then the unit vector is

[tex]\dfrac{\mathbf u\times\mathbf v}{\|\mathbf u\times\mathbf v\|}=\left\langle\dfrac{\sqrt{78}}{30},\dfrac{\sqrt{78}}{39},\dfrac{41\sqrt{78}}{390}\right\rangle[/tex]

(and is unique up to its sign, meaning you can multiply this vector by -1 and still be correct)