Respuesta :

The vertex is (-2,-8)
So the y-value would be -8

[tex] \bf \huge \red{ANSWER}[/tex]

For the function f(x) = [tex] {3x}^{2} + 12x + 4[/tex]

, we need to find the vertex. The vertex is found by first finding [tex]x[/tex], and then substituting for [tex]x[/tex] in the function.

[tex] \bf \huge \blue{Finding \: x}[/tex]

[tex]x = \frac{ - b}{2a} [/tex]

where b is the coefficient of the [tex]x[/tex] term and a is the coefficient of the [tex] {x}^{2} [/tex] term.

[tex]x = \frac{ - 12}{ {2}^{3} } [/tex]

[tex]x = - 2[/tex]

[tex] \bf \huge \green{finding \: y}[/tex]

 To find

[tex]y[/tex]

, substitute for

[tex]x[/tex]

in the given function

[tex]y = {3}^{ {( - 2}^{2}) } + {12}^{( - 2)} + 4[/tex]

[tex]y = 12 - 24 + 4[/tex]

[tex]y = - 16[/tex]

[tex] \bf \huge \purple{vertex}[/tex]

The vertex is [tex]( - 2 - 16)[/tex]

 

Since the coefficient of the [tex] {x}^{2} [/tex]

 term is positive, we have a minimum.

 

The minimum is at -16.