Respuesta :
[tex] \bf \huge \red{ANSWER}[/tex]
For the function f(x) = [tex] {3x}^{2} + 12x + 4[/tex]
, we need to find the vertex. The vertex is found by first finding [tex]x[/tex], and then substituting for [tex]x[/tex] in the function.
[tex] \bf \huge \blue{Finding \: x}[/tex]
[tex]x = \frac{ - b}{2a} [/tex]
where b is the coefficient of the [tex]x[/tex] term and a is the coefficient of the [tex] {x}^{2} [/tex] term.
[tex]x = \frac{ - 12}{ {2}^{3} } [/tex]
[tex]x = - 2[/tex]
[tex] \bf \huge \green{finding \: y}[/tex]
To find
[tex]y[/tex]
, substitute for
[tex]x[/tex]
in the given function
[tex]y = {3}^{ {( - 2}^{2}) } + {12}^{( - 2)} + 4[/tex]
[tex]y = 12 - 24 + 4[/tex]
[tex]y = - 16[/tex]
[tex] \bf \huge \purple{vertex}[/tex]
The vertex is [tex]( - 2 - 16)[/tex]
Since the coefficient of the [tex] {x}^{2} [/tex]
term is positive, we have a minimum.
The minimum is at -16.