Respuesta :

Answer:

Lesser minimum value of this function  [tex]g(x) = 12x^{2} + 5x-9[/tex]  is   [tex]-9.520[/tex]

Step-by-step explanation:

Given that,

It is a Quadratic function    [tex]g(x) = 12x^{2} + 5x-9[/tex]    .

To find :- Which function has lesser minimum ?

From the Question,

The General form of quadratic function is

              [tex]y = ax^{2} + bx + c[/tex]

Now comparing the given function we get

           a = 12,         b = 5,         c = -9

So, finding the lesser minimum using the above quadratic function we have

Equation of lesser minimum = [tex]c - \frac{b^{2} }{4a}[/tex]

                                               = [tex]-9 - \frac{5^{2} }{4\times 12}[/tex]

                                               = [tex]-9-\frac{25}{48}[/tex]

                                               = [tex]-9.520[/tex]

Hence,

We get the lesser minimum value of this function  [tex]g(x) = 12x^{2} + 5x-9[/tex] is   [tex]-9.520[/tex]