Answer:
Lesser minimum value of this function [tex]g(x) = 12x^{2} + 5x-9[/tex] is [tex]-9.520[/tex]
Step-by-step explanation:
Given that,
It is a Quadratic function [tex]g(x) = 12x^{2} + 5x-9[/tex] .
To find :- Which function has lesser minimum ?
From the Question,
The General form of quadratic function is
[tex]y = ax^{2} + bx + c[/tex]
Now comparing the given function we get
a = 12, b = 5, c = -9
So, finding the lesser minimum using the above quadratic function we have
Equation of lesser minimum = [tex]c - \frac{b^{2} }{4a}[/tex]
= [tex]-9 - \frac{5^{2} }{4\times 12}[/tex]
= [tex]-9-\frac{25}{48}[/tex]
= [tex]-9.520[/tex]
Hence,
We get the lesser minimum value of this function [tex]g(x) = 12x^{2} + 5x-9[/tex] is [tex]-9.520[/tex]