Respuesta :
Answer:
No, the ride is not safe
Explanation:
From the diagram attached, it is seen that
[tex]\sum f_{y} = 0[/tex]
[tex]\tau cos \theta - W = 0[/tex]................(1)
[tex]\sum f_{x} = 0[/tex]
[tex]-ma + \tau sin \theta = 0[/tex].......(2)
[tex]a = w^{2} r[/tex]
From the diagram, [tex]r = Lsin \theta[/tex]
[tex]a = w^{2} L sin \theta[/tex]
[tex]w = \frac{2\pi }{T}[/tex]
[tex]a = \frac{4\pi ^{2}L sin \theta }{T^{2} }[/tex]............(3)
Put (3) into (2)
[tex]\tau sin \theta = \frac{4\pi ^{2}m L sin \theta }{T^{2} }[/tex]
[tex]\tau = \frac{4\pi ^{2}m L }{T^{2} }[/tex]
w = weight of chair + weight of child = 50 + 10 = 60 lb
g = 32 ft/s²
m = w/g = 60/32 = 1.875
L = 30 ft
T = 3 secs
[tex]\tau = \frac{4\pi ^{2}*1.875*30 }{0.3^{2} }[/tex]
[tex]\tau = 246.74 lbs[/tex]
since 246.74 lbs > 200 lbs, it is not safe because the stationary chair will creak
Answer:
According to the result obtained, the trip is not safe for a 50 lb child.
Explanation:
The sum of forces in y must be equal to zero:
∑Fy = 0
0 = W + Tcosθ
The sum of forces in x:
∑Fx = m*a = -m*W²*r = -T1sinθ
r = Lsinθ
m*W²*Lsinθ = T1sinθ
[tex]m\frac{4\pi ^{2}L }{T^{2} } =T\\\frac{60}{32} \frac{4\pi ^{2} 30}{3^{2} } =T\\T=250lb[/tex]
Like 250 lb > 200 lb, the answer is no