Find the error & find the correct answer 2In(x)=In(3x)-[In(9)-2In(3)] In(x^2)=In(3x)-[In(9)-In(9)] In(x^2)=In(3x)-0 In(x^2)= In(3x/0); division by 0, undefined

Respuesta :

Answer:

Error:[tex]lnx^2=ln 3x[/tex] not [tex]ln\frac{3x}{0}[/tex]

Solution:x=0 and 3

Step-by-step explanation:

We have to find the error and correct answer

Given:[tex]2ln x=ln(3x)-[ln9-2ln(3)][/tex]

[tex]lnx^2=ln(3x)-[ln9-ln3^2][/tex]

Using the formula

[tex]alog b=logb^a[/tex]

[tex]lnx^2=ln(3x)-[ln9-ln9][/tex]

[tex]lnx^2=ln(3x)-0[/tex]

[tex]lnx^2=ln(3x)[/tex]

[tex]x^2=3x[/tex]

[tex]x^2-3x=0[/tex]

[tex]x(x-3)=0[/tex]

Therefore, x=0 and x=3

But last step in the given solution

[tex]lnx^2=ln\frac{3x}{0}=\infty[/tex]

It is wrong this property is used when

[tex]log m-log n[/tex] then

[tex]log\frac{m}{n}[/tex]

Hence, the student wrote  [tex]lnx^2=ln\frac{3x}{0}[/tex]instead of [tex]lnx^2=ln3x[/tex] and solution is given by

x=0 and x=3

Answer:

Since 0 in ln(3x) - 0 is not a logarithm, the  property of logarithms cannot be used here.

The difference shown cannot be written as a quotient of logarithms.

The step ln(x2) = ln(3x) - (0) reduces to

ln(x2) = ln(3x).

The possible solutions are 0 and 3, with 0 being extraneous.

right on edge