A foreign student club lists as its members 2 Canadians, 3 Japanese, 5 Italians, and 2 Germans. If a committee of 4 is selected at random, find the probability that (a) all nationalities are represented; (b) all nationalities except Italian are represented

Respuesta :

Answer:

(a) The probability that the members of the committee are chosen from all nationalities [tex]=\frac{4}{33}[/tex]  =0.1212.

(b)The probability that all nationalities except Italian are represent is 0.04848.

Step-by-step explanation:

Hypergeometric Distribution:

Let [tex]x_1[/tex], [tex]x_2[/tex], [tex]x_3[/tex] and [tex]x_4[/tex] be four given positive integers and let [tex]x_1+x_2+x_3+x_4= N[/tex].

A random variable X is said to have hypergeometric distribution with parameter [tex]x_1[/tex], [tex]x_2[/tex], [tex]x_3[/tex] , [tex]x_4[/tex]  and n.

The probability mass function

[tex]f(x_1,x_2.x_3,x_4;a_1,a_2,a_3,a_4;N,n)=\frac{\left(\begin{array}{c}x_1\\a_1\end{array}\right)\left(\begin{array}{c}x_2\\a_2\end{array}\right) \left(\begin{array}{c}x_3\\a_3\end{array}\right) \left(\begin{array}{c}x_4\\a_4\end{array}\right) }{\left(\begin{array}{c}N\\n\end{array}\right) }[/tex]

Here [tex]a_1+a_2+a_3+a_4=n[/tex]

[tex]{\left(\begin{array}{c}x_1\\a_1\end{array}\right)=^{x_1}C_{a_1}= \frac{x_1!}{a_1!(x_1-a_1)!}[/tex]

Given that, a foreign club is made of  2 Canadian  members, 3 Japanese  members, 5 Italian  members and 2 Germans  members.

[tex]x_1[/tex]=2, [tex]x_2[/tex]=3, [tex]x_3[/tex] =5 and [tex]x_4[/tex]=2.

A committee is made of 4 member.

N=4

(a)

We need to find out the probability that the members of the committee are chosen from all nationalities.

[tex]a_1[/tex]=1, [tex]a_2[/tex]=1,[tex]a_3[/tex]=1 , [tex]a_4[/tex]=1, n=4

The required probability is

[tex]=\frac{\left(\begin{array}{c}2\\1\end{array}\right)\left(\begin{array}{c}3\\1\end{array}\right) \left(\begin{array}{c}5\\1\end{array}\right) \left(\begin{array}{c}2\\1\end{array}\right) }{\left(\begin{array}{c}12\\4\end{array}\right) }[/tex]

[tex]=\frac{2\times 3\times 5\times 2}{495}[/tex]

[tex]=\frac{4}{33}[/tex]

=0.1212

(b)

Now we find out the probability that all nationalities except Italian.

So, we need to find out,

[tex]P(a_1=2,a_2=1,a_3=0,a_4=1)+P(a_1=1,a_2=2,a_3=0,a_4=1)+P(a_1=1,a_2=1,a_3=0,a_4=2)[/tex]

[tex]=\frac{\left(\begin{array}{c}2\\2\end{array}\right)\left(\begin{array}{c}3\\1\end{array}\right) \left(\begin{array}{c}5\\0\end{array}\right) \left(\begin{array}{c}2\\1\end{array}\right) }{\left(\begin{array}{c}12\\4\end{array}\right) }+\frac{\left(\begin{array}{c}2\\1\end{array}\right)\left(\begin{array}{c}3\\2\end{array}\right) \left(\begin{array}{c}5\\0\end{array}\right) \left(\begin{array}{c}2\\1\end{array}\right) }{\left(\begin{array}{c}12\\4\end{array}\right) }[/tex][tex]+\frac{\left(\begin{array}{c}2\\1\end{array}\right)\left(\begin{array}{c}3\\1\end{array}\right) \left(\begin{array}{c}5\\0\end{array}\right) \left(\begin{array}{c}2\\2\end{array}\right) }{\left(\begin{array}{c}12\\4\end{array}\right) }[/tex]

[tex]=\frac{1\times 3\times 1\times 2}{495}+\frac{2\times 3\times 1\times 2}{495}+\frac{2\times 3\times 1\times 1}{495}[/tex]

[tex]=\frac{6+12+6}{495}[/tex]

[tex]=\frac{8}{165}[/tex]

=0.04848

The probability that all nationalities except Italian are represent is 0.04848.

A) The probability that all nationalities are represented is 0.5%.

B) The probability that all nationalities except Italian are represented is 7%.

Given that a foreign student club lists as its members 2 Canadians, 3 Japanese, 5 Italians, and 2 Germans, if a committee of 4 is selected at random, to fi nd the probability that (A) all nationalities are represented; (B) all nationalities except Italian are represented; the following calculations must be performed:

2 + 3 + 5 + 2 = 12

  • 2/12 x 3/11 x 5/10 x 2/9 = X
  • 0.0050 = X
  • 0.0050 x 100 = 0.5

Therefore, the probability that all nationalities are represented is 0.5%.

  • 7/12 x 6/11 x 5/10 x 4/9 = X
  • 0.070 = X
  • 0.070 x 100 = 7

In turn, the probability that all nationalities except Italian are represented is 7%.

Learn more in https://brainly.com/question/11034287