Respuesta :
Answer:
dV = 9600π = 30,171.4 cm³
Step-by-step explanation:
Volume of a cylinder = πr²h
V(r,h) = πr²h
Total Differential of V = dV
For a multi-variable function, the total differential is given as
dV = (∂V/∂r) Δr + (∂V/∂h) Δh
Δr = 1 cm
Δh = 1 cm
V(r,h) = πr²h
(∂V/∂r) = 2πrh
(∂V/∂h) = πr²
dV = (2πrh) (1) + (πr²) (1)
dV = (2πrh) + (πr²)
radius of 40 cm and a height of 100 cm
r = 40 cm
h = 100 cm
dV = (2πrh) + (πr²)
dV = (2π×40×100) + [π(40²)]
dV = 8000π + 1600π = 9600π
dV = 30,171.4 cm³
Hope this Helps!!!
The required answer is [tex]\frac{dV}{dt}=9600\pi[/tex]
The volume of the cylinder:
The formula for the volume of the cylinder is,
[tex]V=\pi r^2h[/tex]
It is given that,
[tex]r=40cm\\h=100cm\\\frac{dh}{dt}=\frac{dr}{dt}=1 cm[/tex]
Now, the change in the volume can be given by,
[tex]\frac{dV}{dt}=\pi r^2\frac{dh}{dt}+\pi \times 2r \times \frac{dr}{dt} \timesh\\\frac{dV}{dt}= \pi [(40)^2(1)+(2)(40)(1)(100)] \\\frac{dV}{dt}=9600\pi[/tex]
Learn more bout the volume of the cylinder:
https://brainly.com/question/26507715