Respuesta :
Answer:
The volume in the first tank = 0.32 [tex]m^{3}[/tex]
The volume in the second tank = 2.066 [tex]m^{3}[/tex]
The final pressure of the mixture = 203.64 K pa
Explanation:
First Tank
Mass = 2 kg
Pressure = 550 k pa
Temperature = 25 °c = 298 K
Gas constant for nitrogen = 0.297 [tex]\frac{KJ}{Kg K}[/tex]
From the ideal gas equation
P V = m R T
550 × V = 2 × 0.297 × 298
V = 0.32 [tex]m^{3}[/tex]
This is the volume in the first tank.
Second tank
Mass = 4 kg
Pressure = 150 K pa
Temperature = 25 °c = 298 K
Gas constant for oxygen = 0.26 [tex]\frac{KJ}{Kg K}[/tex]
From the ideal gas equation
P V = m R T
150 × V = 4 × 0.26 × 298
V = 2.066 [tex]m^{3}[/tex]
This is the volume in the second tank.
This is the iso thermal mixing. i.e.
[tex]P_{3} V_{3} = P_{1} V_{1} + P_{2} V_{2}[/tex] ----- (1)
[tex]V_{3} = V_{1} + V_{2}[/tex]
[tex]V_{3} = 0.32 + 2.066[/tex]
[tex]V_{3} = 2.386 \ m^{3}[/tex]
Put this value in equation (1)
[tex]P_{3}[/tex] × 2.386 = 550 × 0.32 + 150 × 2.066
[tex]P_{3}[/tex] = 203.64 K pa
Therefore the final pressure of the mixture = 203.64 K pa
The volume of the first tank has been [tex]\rm 0.32\;m^3[/tex]. The volume of the second tank has been [tex]\rm 2.066\;m^3[/tex]. The final pressure of the mixture has been 203.646 kPa.
The final volume of the first tank has been given by ideal gas equation as:
[tex]PV=mRT[/tex]
Where the pressure of the tank, [tex]P=550 \;\rm {kPa}[/tex]
The mass of gas, [tex]m=2\;\rm kg[/tex]
The gas constant for nitrogen, [tex]R=0.297 \;\rm kJ/kg.K[/tex]
The temperature of the gas, [tex]T=25\;^\circ \rm C;\;298\;K[/tex]
Substituting the values for volume (V) of nitrogen tank:
[tex]\rm 550\;\times\;\textit V=2\;\times\;0.297\;\times\;298\\\textit V=0.32\;m^3[/tex]
The volume of the first tank has been [tex]\rm 0.32\;m^3[/tex].
The volume of the second tank of gas has been given as:
The pressure of the tank, [tex]P=150 \;\rm {kPa}[/tex]
The mass of gas, [tex]m=4\;\rm kg[/tex]
The gas constant for nitrogen, [tex]R=0.26 \;\rm kJ/kg.K[/tex]
The temperature of the gas, [tex]T=25\;^\circ \rm C;\;298\;K[/tex]
Substituting the values for volume (V) of oxygen tank:
[tex]\rm 150\;\times\;\textit V=2\;\times\;0.26\;\times\;298\\\textit V=2.066\;m^3[/tex]
The volume of the second tank has been [tex]\rm 2.066\;m^3[/tex].
The final pressure of the mixture has been given by the equation of isothermal mixing as:
[tex]P_3V_3=P_1V_1\;+\;P_2V_2[/tex]
Where [tex]P_3V_3[/tex] has been the pressure and volume of the final solution.
[tex]P_1V_1[/tex] has been the pressure and volume of the nitrogen tank.
[tex]P_2V_2[/tex] has been the pressure and volume of the oxygen tank.
The final volume of solution, [tex]V_3=V_1\;+\;V_2[/tex]
[tex]V_3=0.32\;+\;0/266\;\text m^3\\V_3=2.386\;\text m^3[/tex]
Substituting the values:
[tex]P_3\;\times\;2.386=(550\;\times\;0.32\;)+\;(150\;\times\;2.066)\\P_3\;\times\;2.386=176\;+\;309.9\\P_3=\dfrac{485.9}{2.386} \\P_3=203.646\;\rm kPa[/tex]
The final pressure of the mixture has been 203.646 kPa.
For more information about pressure, refer to the link:
https://brainly.com/question/356585