Given:
z is jointly proportional to x² and y². This can be written as,
[tex]z=kx^{2} y^2[/tex]
We need to determine the value of z when x = 6 and y = 4
Value of constant k:
If z = 379 when x = 7 and y = 5, then, we get;
[tex]370=k(7)^2(5)^2[/tex]
Simplifying the terms, we get;
[tex]370=k(49)(25)[/tex]
[tex]370=1225k[/tex]
Dividing both sides of the equation by 1225, we get;
[tex]0.309=k[/tex]
Thus, the value of k is 0.309
Value of z:
The value of z can be determined by substituting [tex]k=0.309[/tex] , [tex]x=6[/tex] and [tex]y=4[/tex] in [tex]z=kx^{2} y^2[/tex]
Thus, we get;
[tex]z=0.309(6)^2(4)^2[/tex]
[tex]z=0.309(36)(16)[/tex]
[tex]z=177.98[/tex]
Thus, the value of z is 177.98