Respuesta :
Answer:
Step-by-step explanation:
Given:
(y/y - 4) - (4/y + 4) = 32/y^2 - 16
Note y^2 - 16 = (y - 4 ) × (y + 4)
Multiplying the equation; both sides by y^2 - 16,
y (y + 4) - (4(y - 4)) = 32
y^2 + 4y - 4y + 16 = 32
y^2 = 32 - 16
Squaring both sides,
y = sqrt(16)
= 4
The solution to the given equation is 4 and -4
Given the function:
[tex]\frac{y}{y-4} -\frac{4}{y+4}=\frac{32}{y^2-16}[/tex]
Find the least common denominator of the function:
[tex]=\frac{y}{y-4} -\frac{4}{y+4}\\=\frac{y(y+4)-4(y-4)}{(y-4)(y+4)} \\=\frac{y^2+4y-4y+16}{(y-4)(y+4)}\\=\frac{y^2+16}{y^2-16}[/tex]
Equating the result to [tex]\frac{32}{y^2-16}[/tex]
[tex]\frac{y^2+16}{y^2-16} = \frac{32}{y^2-16}\\y^2 + 16 = 32\\y^2= 32-16\\y^2=16\\y = \pm \sqrt{16} \\y= \pm 4[/tex]
Hence the solution to the given equation is 4 and -4
Learn more on sum of functions here; https://brainly.com/question/17431959