Respuesta :
If you would like to solve (x^3 + 8) / (x + 2), you can do this using the following steps:
x^3 + 8 = (x + 2) * (x^2 - 2x + 4)
(x^3 + 8) / (x + 2) = (x + 2) * (x^2 - 2x + 4) / (x + 2) = x^2 - 2x + 4
The correct result would be x^2 - 2x + 4.
x^3 + 8 = (x + 2) * (x^2 - 2x + 4)
(x^3 + 8) / (x + 2) = (x + 2) * (x^2 - 2x + 4) / (x + 2) = x^2 - 2x + 4
The correct result would be x^2 - 2x + 4.
As the Question is not clear
But there are two possibilities
1. [tex]\frac{x^3+8}{x+2}=\frac{(x+2)(x^2-2 x+4)}{x+2}=x^2-2 x+4[/tex]→→Cancelling x+2 from numerator and denominator
→→ Using the formula (a³ + b³) =(a+b)(a² - ab + b²)
Or if
[tex]\frac{x^3-8}{x-2}=\frac{(x-2)(x^2+2x+4)}{x-2}=x^2+ 2 x +4[/tex]→→Cancelling x-2 from numerator and denominator
Using the formula (a³ - b³) =(a-b)(a² + ab + b²)
Statement (1) appears true.
So, correct option is x²- 2 x + 4 or x² + 2 x + 4