Answer : The final temperature of the solution in the calorimeter is, [tex]31.0^oC[/tex]
Explanation :
First we have to calculate the heat produced.
[tex]\Delta H=\frac{q}{n}[/tex]
where,
[tex]\Delta H[/tex] = enthalpy change = -44.5 kJ/mol
q = heat released = ?
m = mass of [tex]NaOH[/tex] = 1.52 g
Molar mass of [tex]NaOH[/tex] = 40 g/mol
[tex]\text{Moles of }NaOH=\frac{\text{Mass of }NaOH}{\text{Molar mass of }NaOH}=\frac{1.52g}{40g/mole}=0.038mole[/tex]
Now put all the given values in the above formula, we get:
[tex]44.5kJ/mol=\frac{q}{0.038mol}[/tex]
[tex]q=1.691kJ[/tex]
Now we have to calculate the final temperature of solution in the calorimeter.
[tex]q=m\times c\times (T_2-T_1)[/tex]
where,
q = heat produced = 1.691 kJ = 1691 J
m = mass of solution = 1.52 + 35.5 = 37.02 g
c = specific heat capacity of water = [tex]4.18J/g^oC[/tex]
[tex]T_1[/tex] = initial temperature = [tex]20.1^oC[/tex]
[tex]T_2[/tex] = final temperature = ?
Now put all the given values in the above formula, we get:
[tex]1691J=37.02g\times 4.18J/g^oC\times (T_2-20.1)[/tex]
[tex]T_2=31.0^oC[/tex]
Thus, the final temperature of the solution in the calorimeter is, [tex]31.0^oC[/tex]