Answer:
Electric force is [tex]6.2\cdot 10^{35}[/tex] times stronger than gravitational force
Explanation:
The gravitational force between two objects is given by:
[tex]F_G = G\frac{m_1 m_2}{r^2}[/tex]
where
G is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between the objects
Here we have:
[tex]m_1 = 1.67\cdot 10^{-27}kg[/tex] (mass of the proton)
[tex]m_2=4\cdot 1.67\cdot 10^{-27} =6.68\cdot 10^{-27} kg[/tex] (mass of the helium nucleus is equal to 4 times the mass of a proton)
[tex]r=100 \mu m = 100\cdot 10^{-6} m[/tex]
So,
[tex]F_G = (6.67\cdot 10^{-11}) \frac{(1.67\cdot 10^{-27})(6.68\cdot 10^{-27})}{(100\cdot 10^{-6})^2}=7.44\cdot 10^{-56} N[/tex]
The electric force between two charged object is given by
[tex]F_E=k\frac{q_1 q_2}{r^2}[/tex]
where
k is the Coulomb constant
q1, q2 are the two charges
r is the separation
Here we have
[tex]q_1 = 1.6\cdot 10^{-19}C[/tex] (charge of the proton)
[tex]q_2 = 2\cdot (1.6\cdot 10^{-19})=3.2\cdot 10^{-19}C[/tex] (charge of the helium nucleus is twice that of the proton)
[tex]r=100 \mu m = 100\cdot 10^{-6} m[/tex]
So,
[tex]F_E=(9\cdot 10^9) \frac{(1.6\cdot 10^{-19})(3.2\cdot 10^{-19})}{(100\cdot 10^{-6})^2}=4.6\cdot 10^{-20}N[/tex]
Therefore, we see that the electric force is much stronger than the gravitational force, by a factor of:
[tex]\frac{F_E}{F_G}=\frac{4.6\cdot 10^{-20}}{7.44\cdot 10^{-56}}=6.2\cdot 10^{35}[/tex]