Suppose the sand in a sand box with length 14 feet, width 8 feet, and height 1.5 feet is to be removed. The density of the sand (in pounds per cubic feet) h feet from the bottom is given by δ(h)=2.5−h. Find the work required to completely empty the sandbox.

Respuesta :

Answer:

The work required is  [tex]W= 252lb \cdot ft[/tex]

Explanation:

  The volume of the sand box is mathematical represented as

                     [tex]dV = L * W * dh[/tex]

Substituting 14 feet for L,  8 feet for W into the equation

                           [tex]= 14* 8*dh[/tex]

                          [tex]= 112dh[/tex]

The force as a result of the sand in the disk is mathematically represented as

              [tex]dF = \rho * dV[/tex]

     Substituting (2.5-h)  for [tex]\rho[/tex]

              [tex]dF =112(2.5-h) dh[/tex]

Now the work that is required to lift the sand from h = 0 to a height of  h=1.5 m is mathematically represented as

                      [tex]dW = 112(2.5 -h)(1.5-h)dh[/tex]

Now above is the formula for change in work done in order to obtain the workdone we integrate

                    [tex]W = 112 \int\limits^{1.5}_0 {(2.5 - h)(1.5-h)} \, dh[/tex]

                         [tex]=112\int\limits^{1.5}_0 {3.5-4h + h^2} \, dh[/tex]  

                        [tex]= 112 [3.75h -2h^2 + \frac{h^3}{3} ]{ {{1.5} \atop {0}} \right.[/tex]

                       [tex]= 112 [3.75 (1.5) -2(1.5)^2 + \frac{1.5^3}{3} ][/tex]

                      [tex]= 112 * 2.25[/tex]

                     [tex]= 252lb \cdot ft[/tex]