Respuesta :
Answer : The value of [tex]\Delta G^o[/tex] for the reaction is, -5386.4 kJ
Explanation :
The given chemical reaction is:
[tex]C_6H_{12}O_6(s)+6O_2(g)\rightarrow 6CO_2(g)+6H_2O(g)[/tex]
First we have to calculate the entropy of reaction [tex](\Delta S^o)[/tex].
[tex]\Delta S^o=S_f_{product}-S_f_{reactant}[/tex]
[tex]\Delta S^o=[n_{CO_2(g)}\times \Delta S^0_{(CO_2(g))}+n_{H_2O(g)}\times \Delta S^0_{(H_2O(g))}]-[n_{C_6H_{12}O_6(s)}\times \Delta S^0_{(C_6H_{12}O_6(s))}+n_{O_2(g)}\times \Delta S^0_{(O_2(g))}][/tex]
where,
[tex]\Delta S^o[/tex] = entropy of reaction = ?
n = number of moles
Now put all the given values in this expression, we get:
[tex]\Delta S^o=[6mole\times (211J/K.mol)+6mole\times (188.7J/K.mol]-[1mole\times (218J/K.mol)+6mole\times (206J/K.mol][/tex]
[tex]\Delta S^o=944.2J/K[/tex]
Now we have to calculate the enthalpy of reaction [tex](\Delta H^o)[/tex].
[tex]\Delta H^o=H_f_{product}-H_f_{reactant}[/tex]
[tex]\Delta H^o=[n_{CO_2(g)}\times \Delta H^0_{(CO_2(g))}+n_{H_2O(g)}\times \Delta H^0_{(H_2O(g))}]-[n_{C_6H_{12}O_6(s)}\times \Delta H^0_{(C_6H_{12}O_6(s))}+n_{O_2(g)}\times \Delta H^0_{(O_2(g))}][/tex]
where,
[tex]\Delta H^o[/tex] = enthalpy of reaction = ?
n = number of moles
Now put all the given values in this expression, we get:
[tex]\Delta H^o=[6mole\times (-396kJ/mol)+6mole\times (-242kJ/mol]-[1mole\times (-1277kJ/mol)+6mole\times (0kJ/mol][/tex]
[tex]\Delta H^o=-5105kJ[/tex]
Now we have to calculate the Gibbs free energy.
As we know that,
[tex]\Delta G^o=\Delta H^o-T\Delta S^o[/tex]
where,
[tex]\Delta G^o[/tex] = standard Gibbs free energy = ?
[tex]\Delta H^o[/tex] = standard enthalpy = -5105 kJ
[tex]\Delta S^o[/tex] = standard entropy = 944.2 J/K = 0.9442 kJ/K
T = temperature of reaction = 298 K
Now put all the given values in the above formula, we get:
[tex]\Delta G^o=(-5105kJ)-(298K\times 0.9442kJ/K)[/tex]
[tex]\Delta G^o=-5386.4kJ[/tex]
Therefore, the value of [tex]\Delta G^o[/tex] for the reaction is, -5386.4 kJ