The Hudson Bay tides vary between 3 feet and 9 feet. The tide is at its lowest point when time (t) is 0 and completes a full cycle in 14 hours. What is the amplitude, period, and midline of a function that would model this periodic phenomenon? Amplitude = 3 feet; period = 14 hours; midline: y = 6 Amplitude = 3 feet; period = 7 hours; midline: y = 3 Amplitude = 6 feet; period = 14 hours; midline: y = 6 Amplitude = 6 feet; period = 7 hours; midline: y = 3

Respuesta :

Answer:

                [tex]y(t) = 6 -3cos(\frac{2\pi }{14} )t[/tex]

                [tex]y(t) = 6 -3cos(\frac{2\pi }{7} )t[/tex]

                [tex]y(t) = 6 - 6cos(\frac{2\pi }{14} ) t[/tex]

                [tex]y(t) = 3- 6cos(\frac{2\pi }{7} )t[/tex]

Step-by-step explanation:

Given that,

Hudson Bay tides vary between [tex]3 ft[/tex] and [tex]9 ft[/tex].

Tide is at its lowest when [tex]t=0[/tex]

Completes a full cycle in 14 hours.

To find:- What is the amplitude, period, and midline of a function that would model this periodic phenomenon?

So, The periodic function of this model is

                                         [tex]y(t) = y^{'} + Acos(\omega\ t)[/tex]                ...................(1)

                                                                 where, [tex]A- Amplitude of cycle[/tex]

                                                                              [tex]\omega = Angular speed (in Radian.)[/tex]

Then putting the value in given Equation(1) we get,

        Amplitude = [tex]\frac{9-3}{2} ft = 3ft[/tex]

                      [tex]y^{'} = (3+ 3 )ft = 6ft[/tex]

Now, At [tex]t=0 sec[/tex] it complete full cycle in [tex]14 hours.[/tex] [tex]-cos(\omega t)[/tex] because it is at lowest at t=0sec.

∵                    [tex]\omega t= 2\pi[/tex]

                     [tex]\omega (t+14) = 2\pi[/tex]

∴                           [tex]\omega = \frac{2\pi }{14}[/tex]            

Hence     [tex]y(t) = 6 -3cos(\frac{2\pi }{14} )t[/tex]

                [tex]y(t) = 6 -3cos(\frac{2\pi }{7} )t[/tex]

                [tex]y(t) = 6 - 6cos(\frac{2\pi }{14} ) t[/tex]

                [tex]y(t) = 3- 6cos(\frac{2\pi }{7} )t[/tex]