Respuesta :
Answer:
a) hydrostatic pressure at bottom = 10054.375 lb/ft-s2
b) hydrostatic force at bottom = 150815.625 lb-ft/s2
c) hydrostatic force at one end of aquarium = o
Step-by-step explanation:
Detailed explanation and calculation is shown in the image below
Answer:
a) [tex]P=312.5 lb/ft^{2}[/tex]
b) [tex]F=4687.5 lb[/tex]
c) [tex]F=843.75 lb [/tex]
Step-by-step explanation:
a) The hydrostatic pressure equation is given by:
[tex]P=\rho gd=\delta d[/tex]
- ρ is the weight density of water (ρ = 62.5 lb/ft³)
- d is the deep of the aquarium (d = 5 ft)
So P will be:
[tex]P=62.5*5=312.5 lb/ft^{2}[/tex]
b) The hydrostatic force of the bottom of the aquarium will be:
[tex]F=P*A=P*(long*wide)[/tex]
[tex]F=P*(long*wide)=312.5*5*3[/tex]
[tex]F=4687.5 lb[/tex]
c) Here we first need to find the horizontal slice of with dx and ad deep x.
The area of this strip is: dA = 3*dx.
So the force will be:
[tex]F=\int^{3}_{0}P*dA=\int^{3}_{0}\delta x*3dx=3\delta\int^{3}_{0}xdx=3\delta*\frac{x^{2}}{2}|^{3}_{0}=3\delta(\frac{3^{2}}{2}) [/tex]
[tex]F=3*62.5*(\frac{3^{2}}{2})=843.75 lb [/tex]
I hope it helps you!