Answer:
[tex]F_0(x+\frac{1}{2L_0}x^2+\frac{L^2_0}{L_0+x}-L_0)[/tex]
Explanation:
We are given that
Force exerted by a rubber band is given approximately by
[tex]F=F_0(\frac{L_0+x}{L_0}-\frac{L^2_0}{(L_0+x)^2})[/tex]
Where [tex]L_0[/tex]=Unstretched length
x=Stretch length
[tex]F_0[/tex]=Constant
We have to find the work needed to stretch the rubber band the distance x.
Work done=[tex]\int_{0}^{x}Fdx[/tex]
[tex]W=\int_{0}^{x}F_0(\frac{L_0+x}{L_0}-\frac{L^2_0}{(L_0+x)^2}dx[/tex]
[tex]W=\int_{0}^{x}(\frac{F_0}{L_0}(L_0+x)-\frac{L^2_0F_0}{(L_0+x)^2})dx[/tex]
[tex]W=\frac{F_0}{L_0}[L_0x+\frac{x^2}{2}]^{x}_{0}+F_0L^2_0[\frac{1}{L_0+x}]^{x}_{0}[/tex]
[tex]W=\frac{F_0}{L_0}(L_0x+\frac{x^2}{2})+L^2_0F_0(\frac{1}{L_0+x}-\frac{1}{L_0})[/tex]
[tex]W=F_0(x+\frac{1}{2L_0}x^2+\frac{L^2_0}{L_0+x}-L_0)[/tex]