Respuesta :

Answer:

x + 2.3>5.06

-2.3. -2.3

x>2.76

Answer:   x > 69/25

Step-by-step explanation:

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "5.06" was replaced by "(506/100)". 2 more similar replacement(s)

Rearrange:

Rearrange the equation by subtracting what is to the right of the greater than sign from both sides of the inequality :

                    x+(23/10)-((506/100))>0  

Step by step solution :

Step  1  :

           253

Simplify   ———

           50  

Equation at the end of step  1  :

       23     253

 (x +  ——) -  ———  > 0  

       10     50  

Step  2  :

           23

Simplify   ——

           10

Equation at the end of step  2  :

       23     253

 (x +  ——) -  ———  > 0  

       10     50  

Step  3  :

Rewriting the whole as an Equivalent Fraction :

3.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  10  as the denominator :

         x     x • 10

    x =  —  =  ——————

         1       10  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

x • 10 + 23     10x + 23

———————————  =  ————————

    10             10    

Equation at the end of step  3  :

 (10x + 23)    253

 —————————— -  ———  > 0  

     10        50  

Step  4  :

Calculating the Least Common Multiple :

4.1    Find the Least Common Multiple

     The left denominator is :       10  

     The right denominator is :       50  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 1 1

5 1 2 2

Product of all  

Prime Factors  10 50 50

     Least Common Multiple:

     50  

Calculating Multipliers :

4.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 5

  Right_M = L.C.M / R_Deno = 1

Making Equivalent Fractions :

4.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      (10x+23) • 5

  ——————————————————  =   ————————————

        L.C.M                  50      

  R. Mult. • R. Num.      253

  ——————————————————  =   ———

        L.C.M             50  

Adding fractions that have a common denominator :

4.4       Adding up the two equivalent fractions

(10x+23) • 5 - (253)     50x - 138

————————————————————  =  —————————

         50                 50    

Step  5  :

Pulling out like terms :

5.1     Pull out like factors :

  50x - 138  =   2 • (25x - 69)  

Equation at the end of step  5  :

 2 • (25x - 69)

 ——————————————  > 0  

       50      

Step  6  :

6.1    Multiply both sides by  50  

6.2    Divide both sides by  2  

6.3    Divide both sides by  25  

     x-(69/25)  > 0