Answer:
[tex]6\sqrt{3}i-6j[/tex]
Step-by-step explanation:
Given:
The magnitude, v=12
The angle [tex]\alpha[/tex] it makes with the positive x-axis =[tex]150^0[/tex]
Now for a vector (x,y)
Therefore:
[tex]150 =tan^{-1}(\frac{y}{x} )\\\frac{y}{x} =tan 150\\\frac{y}{x}=-\frac{\sqrt{3} }{3}[/tex]
[tex]y=-\frac{x \sqrt{3}}{3}[/tex]
Similarly:
[tex]v=\sqrt{x^2+y^2}\\12=\sqrt{x^2+y^2}\\12^2=x^2+y^2\\144=x^2+y^2[/tex]
[tex]144=x^2+(-\frac{x \sqrt{3}}{3} )^2\\144=x^2+\frac{3x^2}{9} \\144=\frac{4x^2}{3}\\4x^2=144 X 3=432\\x^2=108\\x=6\sqrt{3}[/tex]
Recall that:
[tex]y=-\frac{x \sqrt{3}}{3}\\y=-\frac{6\sqrt{3} \sqrt{3}}{3}=-6[/tex]
Therefore: [tex](x,y)=(6\sqrt{3}, -6)[/tex]
The vector in the form ai+bj is therefore:
[tex]6\sqrt{3}i-6j[/tex]