Answer:
[tex]\$522.78[/tex]
Step-by-step explanation:
Let
x ---> the number of years
y ---> the amount in the account balance
Plan A
we have a linear equation of the form
[tex]y=mx+b[/tex]
where
The slope is equal to
[tex]m=\$100\ per\ year[/tex]
The y-intercept or initial value is
[tex]b=\$500[/tex]
substitute
[tex]y=100x+500[/tex]
For x=10 years
substitute
[tex]y=100(10)+500=\$1,500[/tex]
Plan B
we have a exponential growth function of the form
[tex]y=a(1+r)^x[/tex]
where
[tex]a=\$500\\r=15\%=15/100=0.15[/tex]
substitute
[tex]y=500(1+0.15)^x[/tex]
[tex]y=500(1.15)^x[/tex]
For x=10 years
substitute
[tex]y=500(1.15)^{10}=\$2,022.78[/tex]
Find the difference of the two account balances after 10 years
[tex]\$2,022.78-\$1,500=\$522.78[/tex]