contestada

The sides of two similar hexagons are in the ratio 7 : 4. If the area of the smaller hexagon is 368 ft2, what is the area of the larger hexagon?






Respuesta :

The area of the larger hexagon is 1126.74 ft²

Explanation:

Given:

Ratio of sides of two hexagons = 7 : 4

Area of the smaller hexagon = 368 ft²

Area of the larger hexagon = ?

We know:

Area of hexagon = [tex]\frac{3\sqrt{3} }{2} a^2[/tex]

where,

a = side of the hexagon

According to the question:

[tex]368 = \frac{3\sqrt{3} a^2}{2} \\\\a^2 = \frac{368X 2}{3\sqrt{3} } \\\\a^2 = 141.64\\\\a = 11.9[/tex]

Therefore, the side of smaller hexagon is 11.9

So,

[tex]\frac{7}{4} = \frac{x}{11.9} \\\\x = 20.825[/tex]

Therefore, the length of larger hexagon is 20.825

Area of larger hexagon = [tex]\frac{3\sqrt{3}(x)^2 }{2}[/tex]

                                       = [tex]\frac{3X\sqrt{3} (20.825)^2}{2}[/tex]

                                       = 1126.74 ft²

Therefore, the area of the larger hexagon is 1126.74 ft²