Respuesta :
Given:
The equation of the function is [tex]f(x)=x^2-8x+11[/tex]
We need to determine the vertex form.
Vertex form:
The vertex form of the equation of the parabola can be determined by solving the function [tex]f(x)=x^2-8x+11[/tex] using completing the square method.
The vertex form of the function is of the form [tex]f(x)=a(x-h)^2+k[/tex]
We need to write the vertex form of the function in the form of [tex]f(x)=a(x-h)^2+k[/tex]
Hence, let us solve the function [tex]f(x)=x^2-8x+11[/tex] using completing the square method.
Thus, we have;
[tex]f(x)=(x^2-8x+16)-5[/tex]
[tex]f(x)=(x-4)^2-5[/tex]
Thus, the vertex form of the function is [tex]f(x)=(x-4)^2-5[/tex]
Hence, Option A is the correct answer.