Answer:
72.04 dB.
Explanation:
The intensity level of 60dB corresponds to the sound intensity [tex]I[/tex] given by the equation
[tex]60dB = 10log(\dfrac{I}{I_0} )[/tex]
where [tex]I_0 = 1*10^{-12}W/m^2[/tex]
solving for [tex]I[/tex] we get:
[tex]6 = log(\dfrac{I}{I_0} )[/tex]
[tex]10^6 =\dfrac{I}{1*10^{-12}}[/tex]
[tex]\boxed{I = 1*10^{-6} W/m^2}[/tex]
Now, when 16 violins are playing the intensity [tex]I[/tex] becomes
[tex]{I = 16(1*10^{-6} W/m^2)[/tex]
which on the decibel scale gives
[tex]dB = 10log(\dfrac{16*10^{-6}}{1*10^{-12}} )[/tex]
[tex]dB = 72.04\: dB[/tex].
Thus, playing 16 violins together gives the intensity level of 72 dB.