Respuesta :

Answer:

72.04 dB.

Explanation:

The intensity level of 60dB corresponds to the sound intensity [tex]I[/tex] given by the equation

[tex]60dB = 10log(\dfrac{I}{I_0} )[/tex]

where [tex]I_0 = 1*10^{-12}W/m^2[/tex]

solving for [tex]I[/tex] we get:

[tex]6 = log(\dfrac{I}{I_0} )[/tex]

[tex]10^6 =\dfrac{I}{1*10^{-12}}[/tex]

[tex]\boxed{I = 1*10^{-6} W/m^2}[/tex]

Now, when 16 violins are playing the intensity [tex]I[/tex] becomes

[tex]{I = 16(1*10^{-6} W/m^2)[/tex]

which on the decibel scale gives

[tex]dB = 10log(\dfrac{16*10^{-6}}{1*10^{-12}} )[/tex]

[tex]dB = 72.04\: dB[/tex].

Thus, playing 16 violins together gives the intensity level of 72 dB.