Answer:
95% Confidence interval: (0.1645,0.3197)
Step-by-step explanation:
We are given the following in the question:
Sample size, n = 95
N = 500
x = 23
Finite population correction =
[tex]=\sqrt{\dfrac{N-n}{N-1}} = \sqrt{\dfrac{500-95}{500-1}} = 0.9009[/tex]
[tex]\hat{p} = \dfrac{x}{n} = \dfrac{23}{95} = 0.2421[/tex]
95% Confidence interval:
[tex]\hat{p}\pm z_{stat}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}\times fpc[/tex]
[tex]z_{critical}\text{ at}~\alpha_{0.05} = 1.96[/tex]
Putting the values, we get:
[tex]0.2421\pm 1.96(\sqrt{\dfrac{0.2421(1-0.2421)}{95}})\times 0.9009 \\\\= 0.2421\pm 0.0776\\=(0.1645,0.3197)[/tex]