Date:
Page:-
- 2450 pieces of cubical blocks each of
Side 20cm are required to construct the
wall of 15m long, 40cm width. if
wall has a window of side 2.5m ×
1m And a door of size 2m× 3m. what
is height of evall?​

Respuesta :

Answer:

The height of the wall is 2.7 m.

Explanation:

The number of blocks required = 2450. Each cubical block has a side of 20cm(0.2m).

But, volume = length × width × height.

So that,

             the volume of each block = (0.2  × 0.2  ×0.2) [tex]m^{3}[/tex]

                                                        = 0.008 [tex]m^{3}[/tex]

The total volume of the blocks to be used = 2450 × 0.008

                                                                      = 19.6 [tex]m^{3}[/tex]

The window has a measurement of 2.5m ×1m;

            its space volume = 2.5m ×1m × 0.4m

                                         = 1.0 [tex]m^{3}[/tex]

The door has a measurement of 2m× 3m;

           its space volume = 2m× 3m × 0.4m

                                        = 2.4[tex]m^{3}[/tex]

Thus, the window space and door space has a volume = 1.0 [tex]m^{3}[/tex] + 2.4[tex]m^{3}[/tex]

                        = 3.4[tex]m^{3}[/tex]

Total volume of the wall = length × width × height

⇒ The total volume of the blocks - the window space and door space volume = length × width × height

The wall to be constructed has a length of 15m and width 40cm (0.4m).

So that the height could be determined as,

    19.6 [tex]m^{3}[/tex] - (3.4[tex]m^{3}[/tex]) = 15m × 0.4m × height

    16.2 [tex]m^{3}[/tex]  =  6[tex]m^{2}[/tex] ×height

⇒  height  = [tex]\frac{16.2}{6}[/tex]

    height = 2.7 m

Therefore, the height of the wall is 2.7m.