Which expression is equivalent to StartFraction 3 x Over x + 1 EndFractiondivided by x + 1? StartFraction 3 x Over x + 1 EndFraction times StartFraction 1 Over x + 1 EndFraction StartFraction 3 x Over x + 1 EndFraction divided by StartFraction 1 Over x + 1 EndFraction StartFraction x + 1 Over 1 EndFraction divided by StartFraction 3 x Over x + 1 EndFraction StartFraction x + 1 Over 3 x EndFraction times StartFraction x + 1 Over 1 EndFraction

Respuesta :

Answer:

The expression equivalent to [tex]\frac{3x}{x+1}[/tex]  ÷  [tex]x+1[/tex] is  [tex]\frac{3x}{x+1}[/tex]  ×  [tex]\frac{1}{x+1}[/tex] ⇒ 1st answer

Step-by-step explanation:

To divide two fraction we reciprocal the fraction after the division sign and change the division sign to multiplication sign

Ex : [tex]\frac{a}{b}[/tex] ÷ [tex]\frac{c}{d}[/tex] = [tex]\frac{a}{b}[/tex] × [tex]\frac{d}{c}[/tex]

∵ The expression is  [tex]\frac{3x}{x+1}[/tex]  ÷  [tex]x+1[/tex]

- Take the term after the division sign and reciprocal it

- Assume that the denominator of x + 1 is 1, then the numerator

   of the reciprocal is 1 and the denominator is x + 1

∴ The reciprocal of [tex]x+1[/tex] is [tex]\frac{1}{x+1}[/tex]

- Change the division sign (÷) to multiplication sign (×)

∴ [tex]\frac{3x}{x+1}[/tex]  ÷  [tex]x+1[/tex] =  [tex]\frac{3x}{x+1}[/tex]  ×  [tex]\frac{1}{x+1}[/tex]

The expression equivalent to [tex]\frac{3x}{x+1}[/tex]  ÷  [tex]x+1[/tex] is  [tex]\frac{3x}{x+1}[/tex]  ×  [tex]\frac{1}{x+1}[/tex]

The expression that is equivalent to  [tex]\frac{3x}{x + 1} \div x + 1[/tex] is: [tex]\mathbf{\frac{3x}{x + 1} \times \frac{1}{x + 1}}[/tex]

Given the expression, [tex]\frac{3x}{x + 1} \div x + 1[/tex], which is [tex]\frac{3x}{x + 1} \div \frac{x + 1}{1}[/tex],

To find the equivalent expression of  [tex]\frac{3x}{x + 1} \div \frac{x + 1}{1}[/tex], change the multiplication sign to division sign, and turn the second fraction upside down, such that 1 will be the numerator, and x + 1 will be the denominator.

  • Thus:

[tex]\frac{3x}{x + 1} \div \frac{x + 1}{1} = \frac{3x}{x + 1} \times \frac{1}{x + 1}[/tex]

Therefore, the expression that is equivalent to  [tex]\frac{3x}{x + 1} \div x + 1[/tex] is: [tex]\mathbf{\frac{3x}{x + 1} \times \frac{1}{x + 1}}[/tex]

Learn more here:

https://brainly.com/question/16936173