Respuesta :
Answer:
f/g at t =3 will be 9/8
d/ddx(f(x)/g(x))=f'(x)d(x)-f(x)g'(x)/(g'(x))^2
rate of change=(6*8)+(9*9)/9^2
rate of change =43/27=1.5925
Answer:
a) [tex]\frac{f}{g}= \frac{5}{7}[/tex]
It is changing at a rate of [tex]\ \frac{-3}{49}[/tex] units per seconds
b) [tex]\frac{f}{g}= \frac{9}{8}[/tex]
It is changing at a rate of [tex]\frac{- \ 33}{64}[/tex] units per seconds
Step-by-step explanation:
A
Given that:
f and g are functions of time (t):
i.e
f(t) =0
g(t) = 0
Now; at time (t) = 2 ; f equals 5 and is rising at a rate of 6 units per second.
Also; at time 2; g equals 7 and is rising at a rate of 9 units per second
This implies that:
f(2) = 5 f' (2) = 6
g(2) = 7 g' (2) = 9
Then [tex]\frac{f}{g}[/tex] can be directly calculated from the given values which is:
[tex]\frac{f}{g}= \frac{5}{7}[/tex]
Using differentiation to determine the rate of changing ; we have
[tex]\frac{d}{dt} [\frac{f(t)}{g(t)} ]_{t=2}[/tex] [tex]= \frac{g(t).f'(t)-f(t).g'(t)}{(g(t))^2}[/tex]
[tex]\frac{d}{dt} [\frac{f(t)}{g(t)} ]_{t=2}[/tex] [tex]= \frac{7.(6)-5.(9)}{(7)^2}[/tex]
[tex]\frac{d}{dt} [\frac{f(t)}{g(t)} ]_{t=2}[/tex] = [tex]\frac{42-45}{49}[/tex]
[tex]\frac{d}{dt} [\frac{f(t)}{g(t)} ]_{t=2}[/tex] [tex]= \ \ \ \frac{-3}{49}[/tex]
∴ It is changing at a rate of [tex]\ \frac{-3}{49}[/tex] units per seconds
B
Given that:
f and g are functions of time (t):
i.e
f(t) =0
g(t) = 0
NOW; at time (t) = 3
f (3) = 9 f' (3) = 6
g (3) = 8 g' (3) = 9
Then [tex]\frac{f}{g}[/tex] can be directly calculated from the given values which is:
[tex]\frac{f}{g}= \frac{9}{8}[/tex]
Using differentiation to determine the rate of changing ; we have
[tex]\frac{d}{dt} [\frac{f(t)}{g(t)} ]_{t=3}[/tex] [tex]= \frac{g(t).f'(t)-f(t).g'(t)}{(g(t))^2}[/tex]
[tex]\frac{d}{dt} [\frac{f(t)}{g(t)} ]_{t=3}[/tex] [tex]= \frac{8.(6)-9.(9)}{(8)^2}[/tex]
[tex]\frac{d}{dt} [\frac{f(t)}{g(t)} ]_{t=3}[/tex] [tex]= \frac{48-81}{64}[/tex]
[tex]\frac{d}{dt} [\frac{f(t)}{g(t)} ]_{t=3}[/tex] [tex]= \ \frac{- \ 33}{64}[/tex]
∴ It is changing at a rate of [tex]\frac{- \ 33}{64}[/tex] units per seconds
The negative signs means they are decreasing.