Respuesta :
Answer:
All trigonometric Ratios are [tex]SinB = \frac{AC}{AB}[/tex] , [tex]SinA= \frac{CB}{AB}[/tex] , [tex]CosA= \frac{AC}{AB}[/tex]
And [tex]Cos B = \frac{CB}{AB}[/tex].
Step-by-step explanation:
Given that,
A right angle triangle ΔABC, ∠C =90°.
Diagram of the given scenario shown below,
In triangle ΔABC :-
[tex]Hypotenuse = AB\\Base = CB\\Perpendicular = AC[/tex]
So, [tex]Sin\theta = \frac{perpendicular}{hypotenuse}[/tex]
[tex]SinB = \frac{AC}{AB}[/tex]
Now, for ∠A the dimensions of trigonometric ratios will be changed.
Here the base for ∠A is AC , perpendicular side is CB and hypotenuse will be same for all ratios.
[tex]SinA= \frac{CB}{AB}[/tex]
Again, [tex]Cos\theta= \frac{base}{hypotenuse}[/tex]
Then, [tex]CosA= \frac{AC}{AB}[/tex]
And [tex]Cos B = \frac{CB}{AB}[/tex].
Hence,
All trigonometric Ratios are [tex]SinB = \frac{AC}{AB}[/tex] , [tex]SinA= \frac{CB}{AB}[/tex] , [tex]CosA= \frac{AC}{AB}[/tex]
And [tex]Cos B = \frac{CB}{AB}[/tex].