Answer:
Therefore the domain of the sequence is [tex]\{100,175,250,325,......\}[/tex].
Step-by-step explanation:
Given that, Jesse starts for his first car by opening a saving account and depositing $100.
The amount of money in Jesse's savings account can be modeled by the sequence
[tex]A_n=A_{n-1}+75[/tex] , [tex]A_0=100[/tex]
Now putting n=1
[tex]A_1=A_{1-1}+75[/tex]
[tex]\Rightarrow A_1=A_0+75[/tex]
[tex]\Rightarrow A_1=100+75[/tex]
[tex]\Rightarrow A_1=175[/tex]
Now putting n=2
[tex]A_2=A_{2-1}+75[/tex]
[tex]\Rightarrow A_2=A_1+75[/tex]
[tex]\Rightarrow A_1=175+75[/tex]
[tex]\Rightarrow A_1=250[/tex]
Now putting n=3
[tex]A_3=A_{3-1}+75[/tex]
[tex]\Rightarrow A_3=A_2+75[/tex]
[tex]\Rightarrow A_3=250+75[/tex]
[tex]\Rightarrow A_3=325[/tex]
Therefore the domain of the sequence is [tex]\{A_0,A_1,A_2,A_3,..........\}[/tex]
[tex]=\{100,175,250,325,......\}[/tex]